Ultra-processed foods and food additives in gut health and disease

Ultra-processed foods and food additives in gut health and disease
  • Baker, P. et al. Ultra-processed foods and the nutrition transition: global, regional and national trends, food systems transformations and political economy drivers. Obes. Rev. 21, e13126 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sadler, C. R. et al. Processed food classification: conceptualisation and challenges. Trends Food Sci. Technol. 112, 149–162 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Monteiro, C. A., Cannon, G., Lawrence, M., Costa Louzada, M.L. & Pereira Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System (FAO, 2019).

  • Marino, M. et al. A systematic review of worldwide consumption of ultra-processed foods: findings and criticisms. Nutrients 13, 2778 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonaccio, M. et al. Ultra-processed food consumption is associated with increased risk of all-cause and cardiovascular mortality in the Moli-Sani study. Am. J. Clin. Nutr. 113, 446–455 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gupta, S. et al. Characterising percentage energy from ultra-processed foods by participant demographics, diet quality and diet cost: findings from the Seattle Obesity Study (SOS) III. Br. J. Nutr. 126, 773–781 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moubarac, J. C. et al. Processed and ultra-processed food products: consumption trends in Canada from 1938 to 2011. Can. J. Diet. Pract. Res. 75, 15–21 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Juul, F. & Hemmingsson, E. Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010. Public Health Nutr. 18, 3096–3107 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Trends in consumption of ultraprocessed foods among US Youths aged 2-19 years, 1999-2018. JAMA 326, 519–530 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnabel, L. et al. Association between ultraprocessed food consumption and risk of mortality among middle-aged adults in France. JAMA Intern. Med. 179, 490–498 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruggiero, E. et al. Ultra-processed food consumption and its correlates among Italian children, adolescents and adults from the Italian Nutrition & Health Survey (INHES) cohort study. Public Health Nutr. 24, 6258–6271 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Marron-Ponce, J. A., Flores, M., Cediel, G., Monteiro, C. A. & Batis, C. Associations between consumption of ultra-processed foods and intake of nutrients related to chronic non-communicable diseases in Mexico. J. Acad. Nutr. Diet. 119, 1852–1865 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Martini, D., Godos, J., Bonaccio, M., Vitaglione, P. & Grosso, G. Ultra-processed foods and nutritional dietary profile: a meta-analysis of nationally representative samples. Nutrients 13, 3390 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffin, J., Albaloul, A., Kopytek, A., Elliott, P. & Frost, G. Effect of ultraprocessed food intake on cardiometabolic risk is mediated by diet quality: a cross-sectional study. BMJ Nutr. Prev. Health 4, 174–180 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gehring, J. et al. Consumption of ultra-processed foods by pesco-vegetarians, vegetarians, and vegans: associations with duration and age at diet initiation. J. Nutr. 151, 120–131 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Julia, C. et al. Respective contribution of ultra-processing and nutritional quality of foods to the overall diet quality: results from the NutriNet-Santé study. Eur. J. Nutr. 62, 157–164 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Dicken, S. J. & Batterham, R. L. The role of diet quality in mediating the association between ultra-processed food intake, obesity and health-related outcomes: a review of prospective cohort studies. Nutrients 14, 23 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hess, J. M. et al. Dietary guidelines meet NOVA: developing a menu for a healthy dietary pattern using ultra-processed foods. J. Nutr. 153, 2472–2481 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suksatan, W. et al. Ultra-processed food consumption and adult mortality risk: a systematic review and dose-response meta-analysis of 207,291 participants. Nutrients 14, 174 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rico-Campa, A. et al. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 365, l1949 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, S., Kim, H. & Rebholz, C. M. Higher ultra-processed food consumption is associated with increased risk of incident coronary artery disease in the atherosclerosis risk in communities study. J. Nutr. 151, 3746–3754 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srour, B. et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ 365, l1451 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juul, F., Vaidean, G., Lin, Y., Deierlein, A. L. & Parekh, N. Ultra-processed foods and incident cardiovascular disease in the Framingham offspring study. J. Am. Coll. Cardiol. 77, 1520–1531 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Duan, M. J., Vinke, P. C., Navis, G., Corpeleijn, E. & Dekker, L. H. Ultra-processed food and incident type 2 diabetes: studying the underlying consumption patterns to unravel the health effects of this heterogeneous food category in the prospective Lifelines cohort. BMC Med. 20, 7 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiolet, T. et al. Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. BMJ 360, k322 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lane, M. M. et al. Ultraprocessed food and chronic noncommunicable diseases: a systematic review and meta-analysis of 43 observational studies. Obes. Rev. 22, e13146 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hall, K. D. et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 30, 226 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scientific Advisory Committee on Nutrition. SACN Statement on Processed Foods and Health. gov.uk https://www.gov.uk/government/publications/sacn-statement-on-processed-foods-and-health (2023).

  • Chen, J. et al. Intake of ultra-processed foods is associated with an increased risk of Crohn’s disease: a cross-sectional and prospective analysis of 187,154 participants in the UK Biobank. J. Crohns Colitis 17, 535–552 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Vasseur, P. et al. Dietary patterns, ultra-processed food, and the risk of inflammatory bowel diseases in the NutriNet-Santé cohort. Inflamm. Bowel Dis. 27, 65–73 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Narula, N. et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. BMJ 374, n1554 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer, A. et al. Food processing and risk of Crohn’s disease and ulcerative colitis: a European prospective cohort study. Clin. Gastroenterol. Hepatol. 21, 1607–1616.e6 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lo, C. H. et al. Ultra-processed foods and risk of Crohn’s disease and ulcerative colitis: a prospective cohort study. Clin. Gastroenterol. Hepatol. 20, e1323–e1337 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Narula, N. et al. Food processing and risk of inflammatory bowel disease: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 21, 2483–2495.e1 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Piovani, D. et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology 157, 647–659.e4 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Narula, N. et al. Enteral nutritional therapy for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 4, CD000542 (2018).

    PubMed 

    Google Scholar
     

  • Rutgeerts, P. et al. Effect of faecal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 338, 771–774 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnabel, L. et al. Association between ultra-processed food consumption and functional gastrointestinal disorders: results from the French NutriNet-Santé cohort. Am. J. Gastroenterol. 113, 1217–1228 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. Association of ultra-processed food consumption with colorectal cancer risk among men and women: results from three prospective US cohort studies. BMJ 378, e068921 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Zhong, G. C. et al. Ultra-processed food consumption and the risk of pancreatic cancer in the prostate, lung, colorectal and ovarian cancer screening trial. Int. J. Cancer 152, 835–844 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El Kinany, K. et al. Food processing groups and colorectal cancer risk in Morocco: evidence from a nationally representative case-control study. Eur. J. Nutr. 61, 2507–2515 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fliss-Isakov, N., Zelber-Sagi, S., Ivancovsky-Wajcman, D., Shibolet, O. & Kariv, R. Ultra-processed food intake and smoking interact in relation with colorectal adenomas. Nutrients 12, 3507 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romaguera, D. et al. Consumption of ultra-processed foods and drinks and colorectal, breast, and prostate cancer. Clin. Nutr. 40, 1537–1545 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shu, L. et al. Association between ultra-processed food intake and risk of colorectal cancer: a systematic review and meta-analysis. Front. Nutr. 10, 1170992 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arayici, M. E., Mert-Ozupek, N., Yalcin, F., Basbinar, Y. & Ellidokuz, H. Soluble and insoluble dietary fiber consumption and colorectal cancer risk: a systematic review and meta-analysis. Nutr. Cancer 74, 2412–2425 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di, Y., Ding, L., Gao, L. & Huang, H. Association of meat consumption with the risk of gastrointestinal cancers: a systematic review and meta-analysis. BMC Cancer 23, 782 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khandpur, N. et al. Categorising ultra-processed foods in large-scale cohort studies: evidence from the Nurses’ Health Studies, the Health Professionals Follow-up Study, and the Growing Up Today Study. J. Nutr. Sci. 10, e77 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lo, C. H. et al. Ultra-processed foods and risk of Crohn’s disease and ulcerative colitis: a prospective cohort study. Clin. Gastroenterol. Hepatol. 20, e1323–e1337 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chervy, M., Barnich, N. & Denizot, J. Adherent-invasive E. coli: update on the lifestyle of a troublemaker in Crohn’s disease. Int. J. Mol. Sci. 21, 3734 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagao-Kitamoto, H. et al. Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. Cell Mol. Gastroenterol. Hepatol. 2, 468–481 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Travinsky-Shmul, T. et al. Ultra-processed food impairs bone quality, increases marrow adiposity and alters gut microbiome in mice. Foods 10, 3107 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuevas-Sierra, A., Milagro, F. I., Aranaz, P., Martinez, J. A. & Riezu-Boj, J. I. Gut microbiota differences according to ultra-processed food consumption in a Spanish population. Nutrients 13, 2710 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hidalgo-Cantabrana, C. et al. Bifidobacteria and their health-promoting effects. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.BAD-0010-2016 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia-Vega, A. S., Corrales-Agudelo, V., Reyes, A. & Escobar, J. S. Diet quality, food groups and nutrients associated with the gut microbiota in a nonwestern population. Nutrients 12, 2938 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regulation (EC) No 1333/2008 of the European Parliament and the Council of 16 December 2008 on Food Additives. gov.uk https://www.legislation.gov.uk/eur/2008/1333/contents#:~:Text=Regulation%20(EC)%20No%201333%2F,additives%20(Text%20with%20EEA%20relevance (2008).

  • Fennema, O. R. Food additives — an unending controversy. Am. J. Clin. Nutr. 46, 201–203 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Food Standards Agency. Approved additives and E numbers. Food Standards Agency https://www.food.gov.uk/business-guidance/approved-additives-and-e-numbers (2018).

  • CODEX Alimentarius: International Food Standards. Class Names and the International Numbering System for Food Additives. Report no. CAC/GL 36-1989 (FAO & WHO, 2015).

  • Trakman, G. L. et al. Processed food as a risk factor for the development and perpetuation of Crohn’s disease — the ENIGMA study. Nutrients 14, 3627 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srour, B. & Touvier, M. Ultra-processed foods and human health: what do we already know and what will further research tell us? EClinicalMedicine 32, 100747 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox, S., Sandall, A., Smith, L., Rossi, M. & Whelan, K. Food additive emulsifiers: a review of their role in foods, legislation and classifications, presence in food supply, dietary exposure, and safety assessment. Nutr. Rev. 79, 726–741 (2020).

    Article 

    Google Scholar
     

  • Chazelas, E. et al. Exposure to food additive mixtures in 106,000 French adults from the NutriNet-Santé cohort. Sci. Rep. 11, 19680 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vin, K. et al. Estimation of the dietary intake of 13 priority additives in France, Italy, the UK and Ireland as part of the FACET project. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 30, 2050–2080 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swidsinski, A. et al. Bacterial overgrowth and inflammation of small intestine after carboxymethylcellulose ingestion in genetically susceptible mice. Inflamm. Bowel Dis. 15, 359–364 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Roberts, C. L. et al. Translocation of Crohn’s disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut 59, 1331–1339 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Maronpot, R. R., Davis, J., Moser, G., Giri, D. K. & Hayashi, S. M. Evaluation of 90-day oral rat toxicity studies on the food additive, gum ghatti. Food Chem. Toxicol. 51, 215–224 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lecomte, M. et al. Dietary emulsifiers from milk and soybean differently impact adiposity and inflammation in association with modulation of colonic goblet cells in high-fat fed mice. Mol. Nutr. Food Res. 60, 609–620 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viennois, E., Merlin, D., Gewirtz, A. T. & Chassaing, B. Dietary emulsifier-induced low-grade inflammation promotes colon carcinogenesis. Cancer Res. 77, 27–40 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M. & Gewirtz, A. T. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66, 1414–1427 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Z. et al. Antimicrobial emulsifier-glycerol monolaurate induces metabolic syndrome, gut microbiota dysbiosis, and systemic low-grade inflammation in low-fat diet fed mice. Mol. Nutr. Food Res. 62, 1700547 (2018).

    Article 

    Google Scholar
     

  • Lock, J. Y., Carlson, T. L., Wang, C. M., Chen, A. & Carrier, R. L. Acute exposure to commonly ingested emulsifiers alters intestinal mucus structure and transport properties. Sci. Rep. 8, 10008 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laudisi, F. et al. The food additive maltodextrin promotes endoplasmic reticulum stress-driven mucus depletion and exacerbates intestinal inflammation. Cell Mol. Gastroenterol. Hepatol. 7, 457–473 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Holder, M. K. et al. Dietary emulsifiers consumption alters anxiety-like and social-related behaviors in mice in a sex-dependent manner. Sci. Rep. 9, 172 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Temkin, A. M. et al. Increased adiposity, inflammation, metabolic disruption and dyslipidemia in adult male offspring of DOSS treated C57BL/6 dams. Sci. Rep. 9, 1530 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furuhashi, H. et al. Dietary emulsifier polysorbate-80-induced small-intestinal vulnerability to indomethacin-induced lesions via dysbiosis. J. Gastroenterol. Hepatol. 35, 110–117 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, M. et al. Modulation of the gut microbiota during high-dose glycerol monolaurate-mediated amelioration of obesity in mice fed a high-fat diet. mBio 11, e00190-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandall, A. M. et al. Emulsifiers impact colonic length in mice and emulsifier restriction is feasible in people with Crohn’s disease. Nutrients 12, 2827 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miclotte, L. et al. Dietary emulsifiers alter composition and activity of the human gut microbiota in vitro, irrespective of chemical or natural emulsifier origin. Front. Microbiol. 11, 577474 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishimura, S. et al. Polysorbate 80-induced leaky gut impairs skeletal muscle metabolism in mice. Physiol. Rep. 8, e14629 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viennois, E. et al. Dietary emulsifiers directly impact adherent-invasive E. coli gene expression to drive chronic intestinal inflammation. Cell Rep. 33, 108229 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viennois, E. & Chassaing, B. Consumption of select dietary emulsifiers exacerbates the development of spontaneous intestinal adenoma. Int. J. Mol. Sci. 22, 2602 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naimi, S., Viennois, E., Gewirtz, A. T. & Chassaing, B. Direct impact of commonly used dietary emulsifiers on human gut microbiota. Microbiome 9, 66 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Um, C. Y. et al. Association of emulsifier and highly processed food intake with circulating markers of intestinal permeability and inflammation in the cancer prevention study-3 diet assessment sub-study. Nutr. Cancer 74, 1701–1711 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rousta, E. et al. The emulsifier carboxymethylcellulose induces more aggressive colitis in humanized mice with inflammatory bowel disease microbiota than polysorbate-80. Nutrients 13, 3565 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chassaing, B. et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology 162, 743–756 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Viennois, E. & Chassaing, B. First victim, later aggressor: how the intestinal microbiota drives the pro-inflammatory effects of dietary emulsifiers? Gut Microbes 9, 1–4 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Daniel, N., Lecuyer, E. & Chassaing, B. Host/microbiota interactions in health and diseases — time for mucosal microbiology! Mucosal Immunol. 14, 1006–1016 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, G. et al. Maternal emulsifier p80 intake induces gut dysbiosis in offspring and increases their susceptibility to colitis in adulthood. mSystems 6, e01337-20 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, Q. et al. Early life dietary emulsifier exposure predisposes the offspring to obesity through gut microbiota-FXR axis. Food Res. Int. 162, 111921 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhattacharyya, S. et al. A randomized trial of the effects of the no-carrageenan diet on ulcerative colitis disease activity. Nutr. Healthy Aging 4, 181–192 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04046913 (2024).

  • Gardner, C. et al. Nonnutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 35, 1798–1808 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, A., Renwick, A. G., Sims, J. & Snodin, D. J. Sucralose metabolism and pharmacokinetics in man. Food Chem. Toxicol. 38, S31–41 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Byard, J. L. & Goldberg, L. The metabolism of saccharin in laboratory animals. Food Cosmet. Toxicol. 11, 391–402 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asif, M. The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. J. Educ. Health Promot. 3, 1 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sylvetsky, A. C., Welsh, J. A., Brown, R. J. & Vos, M. B. Low-calorie sweetener consumption is increasing in the United States. Am. J. Clin. Nutr. 96, 640–646 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitch, S. E. et al. Use of acceptable daily intake (ADI) as a health-based benchmark in nutrition research studies that consider the safety of low-calorie sweeteners (LCS): a systematic map. BMC Public Health 21, 956 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, X. Etiology of inflammatory bowel disease: a unified hypothesis. World J. Gastroenterol. 18, 1708–1722 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez-Palacios, A. et al. The artificial sweetener splenda promotes gut proteobacteria, dysbiosis, and myeloperoxidase reactivity in Crohn’s disease-like ileitis. Inflamm. Bowel Dis. 24, 1005–1020 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magnuson, B. A. et al. Aspartame: a safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Crit. Rev. Toxicol. 37, 629–727 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palmnas, M. S. et al. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE 9, e109841 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zani, F. et al. The dietary sweetener sucralose is a negative modulator of T cell-mediated responses. Nature 615, 705–711 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian, X. et al. Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Front. Physiol. 8, 487 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian, X. et al. Saccharin induced liver inflammation in mice by altering the gut microbiota and its metabolic functions. Food Chem. Toxicol. 107, 530–539 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markus, V. et al. Inhibitory effects of artificial sweeteners on bacterial quorum sensing. Int. J. Mol. Sci. 22, 9863 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Landman, C. et al. Inter-kingdom effect on epithelial cells of the N-Acyl homoserine lactone 3-oxo-C12:2, a major quorum-sensing molecule from gut microbiota. PLoS ONE 13, e0202587 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Sucralose promotes colitis-associated colorectal cancer risk in a murine model along with changes in microbiota. Front. Oncol. 10, 710 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shil, A. et al. Artificial sweeteners disrupt tight junctions and barrier function in the intestinal epithelium through activation of the sweet taste receptor, T1R3. Nutrients 12, 1862 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, M. et al. Sucralose enhances the susceptibility to dextran sulfate sodium (DSS) induced colitis in mice with changes in gut microbiota. Food Funct. 12, 9380–9390 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanawa, Y. et al. Acesulfame potassium induces dysbiosis and intestinal injury with enhanced lymphocyte migration to intestinal mucosa. J. Gastroenterol. Hepatol. 36, 3140–3148 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basson, A. R., Rodriguez-Palacios, A. & Cominelli, F. Artificial sweeteners: history and new concepts on inflammation. Front. Nutr. 8, 746247 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lobach, A. R., Roberts, A. & Rowland, I. R. Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem. Toxicol. 124, 385–399 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hugenholtz, F. & de Vos, W. M. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol. Life Sci. 75, 149–160 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl Acad. Sci. USA 110, 3507–3512 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frankenfeld, C. L., Sikaroodi, M., Lamb, E., Shoemaker, S. & Gillevet, P. M. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States. Ann. Epidemiol. 25, 736–742.e4 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Thomson, P., Santibanez, R., Aguirre, C., Galgani, J. E. & Garrido, D. Short-term impact of sucralose consumption on the metabolic response and gut microbiome of healthy adults. Br. J. Nutr. 122, 856–862 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serrano, J. et al. High-dose saccharin supplementation does not induce gut microbiota changes or glucose intolerance in healthy humans and mice. Microbiome 9, 11 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad, S. Y., Friel, J. & Mackay, D. The effects of non-nutritive artificial sweeteners, aspartame and sucralose, on the gut microbiome in healthy adults: secondary outcomes of a randomized double-blinded crossover clinical trial. Nutrients 12, 3408 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendoza-Martinez, V. M. et al. Is a non-caloric sweetener-free diet good to treat functional gastrointestinal disorder symptoms? A randomized controlled trial. Nutrients 14, 1095 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riboli, E. et al. Carcinogenicity of aspartame, methyleugenol, and isoeugenol. Lancet Oncol. 24, 848–850 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stepien, M. et al. Consumption of soft drinks and juices and risk of liver and biliary tract cancers in a European cohort. Eur. J. Nutr. 55, 7–20 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, G. S. et al. Sweetened beverage consumption and risk of liver cancer by diabetes status: a pooled analysis. Cancer Epidemiol. 79, 102201 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • McCullough, M. L., Hodge, R. A., Campbell, P. T., Guinter, M. A. & Patel, A. V. Sugar- and artificially-sweetened beverages and cancer mortality in a large U.S. prospective cohort. Cancer Epidemiol. Biomark. Prev. 31, 1907–1918 (2022).

    Article 

    Google Scholar
     

  • Zhao, L. et al. Sugar-sweetened and artificially sweetened beverages and risk of liver cancer and chronic liver disease mortality. JAMA 330, 537–546 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • European Food Safety Authority. Food colours. European Food Safety Authority https://www.efsa.europa.eu/en/topics/topic/food-colours (2023).

  • Sharma, V., McKone, H. T. & Markow, P. G. A global perspective on the history, use, and identification of synthetic food dyes. J. Chem. Educ. 88, 24–28 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Bastaki, M., Farrell, T., Bhusari, S., Bi, X. & Scrafford, C. Estimated daily intake and safety of FD&C food-colour additives in the US population. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 34, 891–904 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Z. et al. Food colorants metabolized by commensal bacteria promote colitis in mice with dysregulated expression of interleukin-23. Cell Metab. 33, 1358–1371.e5 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L. et al. Diet modifies colonic microbiota and CD4+ T-cell repertoire to induce flares of colitis in mice with myeloid-cell expression of interleukin 23. Gastroenterology 155, 1177–1191.e16 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, J., Cerniglia, C. E. & Chen, H. Toxicological significance of azo dye metabolism by human intestinal microbiota. Front. Biosci. 4, 568–586 (2012).

    Article 

    Google Scholar
     

  • Zou, L. et al. Bacterial metabolism rescues the inhibition of intestinal drug absorption by food and drug additives. Proc. Natl Acad. Sci. USA 117, 16009–16018 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, Y. H. et al. Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nat. Commun. 13, 7617 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lomer, M. C., Thompson, R. P. & Powell, J. J. Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc. Nutr. Soc. 61, 123–130 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Becker, H. M., Bertschinger, M. M. & Rogler, G. Microparticles and their impact on intestinal immunity. Dig. Dis. 30, 47–54 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • European Food Safety Authority. Safety assessment of titanium dioxide (e171) as a food additive. EFSA J. 19, e06585 (2021).


    Google Scholar
     

  • Lomer, M. C. et al. Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Br. J. Nutr. 92, 947–955 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huybrechts, I. et al. Long-term dietary exposure to different food colours in young children living in different European countries. EFSA Supporting Publ. 7, 53E (2010).


    Google Scholar
     

  • Ruiz, P. A. et al. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut 66, 1216–1224 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bettini, S. et al. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci. Rep. 7, 40373 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Proquin, H. et al. Transcriptomics analysis reveals new insights in E171-induced molecular alterations in a mouse model of colon cancer. Sci. Rep. 8, 9738 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urrutia-Ortega, I. M. et al. Food-grade titanium dioxide exposure exacerbates tumor formation in colitis associated cancer model. Food Chem. Toxicol. 93, 20–31 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pineton de Chambrun, G. et al. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucosal Immunol. 7, 589–601 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talbot, P. et al. Food-grade TiO2 is trapped by intestinal mucus in vitro but does not impair mucin O-glycosylation and short-chain fatty acid synthesis in vivo: implications for gut barrier protection. J. Nanobiotechnol. 16, 53 (2018).

    Article 

    Google Scholar
     

  • Powell, J. J. et al. Characterisation of inorganic microparticles in pigment cells of human gut associated lymphoid tissue. Gut 38, 390–395 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lomer, M. C. et al. Lack of efficacy of a reduced microparticle diet in a multi-centred trial of patients with active Crohn’s disease. Eur. J. Gastroenterol. Hepatol. 17, 377–384 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Lomer, M. C., Harvey, R. S., Evans, S. M., Thompson, R. P. & Powell, J. J. Efficacy and tolerability of a low microparticle diet in a double blind, randomized, pilot study in Crohn’s disease. Eur. J. Gastroenterol. Hepatol. 13, 101–106 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasant, D. H. & Ford, A. C. Functional gastrointestinal disorders in inflammatory bowel disease: time for a paradigm shift? World J. Gastroenterol. 26, 3712–3719 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox, S. R. et al. Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent inflammatory bowel disease in a randomized trial. Gastroenterology 158, 176–188.e7 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levine, A. et al. Crohn’s disease exclusion diet plus partial enteral nutrition induces sustained remission in a randomized controlled trial. Gastroenterology 157, 440–450.e8 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Logan, M. et al. Analysis of 61 exclusive enteral nutrition formulas used in the management of active Crohn’s disease — new insights into dietary disease triggers. Aliment. Pharmacol. Ther. 51, 935–947 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanai, H. et al. The Crohn’s disease exclusion diet for induction and maintenance of remission in adults with mild-to-moderate Crohn’s disease (CDED-AD): an open-label, pilot, randomised trial. Lancet Gastroenterol. Hepatol. 7, 49–59 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03171246 (2024).

  • US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04225689 (2020).

  • Koios, D., Machado, P. & Lacy-Nichols, J. Representations of ultra-processed foods: a global analysis of how dietary guidelines refer to levels of food processing. Int. J. Health Policy Manag. 11, 2588–2599 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Global Food Research Program. Fiscal policies. Global Food Research Program https://www.globalfoodresearchprogram.org/policy-research/fiscal-policies/ (2023).

  • Srour, B. et al. Effect of a new graphically modified Nutri-Score on the objective understanding of foods’ nutrient profile and ultraprocessing: a randomised controlled trial. BMJ Nutr. Prev. Health 6, 108–118 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tobias, D. K. & Hall, K. D. Eliminate or reformulate ultra-processed foods? Biological mechanisms matter. Cell Metab. 33, 2314–2315 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braesco, V. et al. Ultra-processed foods: how functional is the NOVA system? Eur. J. Clin. Nutr. 76, 1245–1253 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Institute of Grocery Distribution. Ultraprocessed foods: a consumer perspective. IGD https://www.igd.com/articles/article-viewer/t/ultra-processed-foods-a-consumer-perspective/i/30969 (2023).

  • Staudacher, H. M., Yao, C. K., Chey, W. D. & Whelan, K. Optimal design of clinical trials of dietary interventions in disorders of gut-brain interaction. Am. J. Gastroenterol. 117, 973–984 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandall, A., Smith, L., Svensen, E. & Whelan, K. Emulsifiers in ultra-processed foods in the United Kingdom food supply. Public Health Nutr. 26, 2256–2270 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chazelas, E. et al. Food additives: distribution and co-occurrence in 126,000 food products of the French market. Sci. Rep. 10, 3980 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staudacher, H. M., Irving, P. M., Lomer, M. C. E. & Whelan, K. The challenges of control groups, placebos and blinding in clinical trials of dietary interventions. Proc. Nutr. Soc. 76, 203–212 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ramirez Carnero, A. et al. Presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in food contact materials (FCM) and its migration to food. Foods 10, 1443 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Per- and polyfluoroalkyl substances exposure and its influence on the intestinal barrier: an overview on the advances. Sci. Total. Env. 852, 158362 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Daniel, N., Gewirtz, A. T. & Chassaing, B. Akkermansia muciniphila counteracts the deleterious effects of dietary emulsifiers on microbiota and host metabolism. Gut 72, 906–917 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kordahi, M. C., Delaroque, C., Bredeche, M. F., Gewirtz, A. T. & Chassaing, B. Vaccination against microbiota motility protects mice from the detrimental impact of dietary emulsifier consumption. PLoS Biol. 21, e3002289 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian, X. et al. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE 12, e0178426 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. P., Browman, D., Herzog, H. & Neely, G. G. Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. PLoS ONE 13, e0199080 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van den Abbeele, P. et al. Low-no-calorie sweeteners exert marked compound-specific impact on the human gut microbiota ex vivo. Int. J. Food Sci. Nutr. 74, 630–644 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chi, L. et al. Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules 23, 367 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, R. L. & Kirkland, J. J. The effect of sodium saccharin in the diet on caecal microflora. Food Cosmet. Toxicol. 18, 353–355 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Becker, S. L. et al. Effect of stevia on the gut microbiota and glucose tolerance in a murine model of diet-induced obesity. FEMS Microbiol. Ecol. 96, fiaa079 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shil, A. & Chichger, H. Artificial sweeteners negatively regulate pathogenic characteristics of two model gut bacteria, E. coli and E. faecalis. Int. J. Mol. Sci. 22, 5228 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abou-Donia, M. B., El-Masry, E. M., Abdel-Rahman, A. A., McLendon, R. E. & Schiffman, S. S. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. J. Toxicol. Env. Health A 71, 1415–1429 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, Z. et al. Low dose of sucralose alter gut microbiome in mice. Front. Nutr. 9, 848392 (2022).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uebanso, T. et al. Effects of low-dose non-caloric sweetener consumption on gut microbiota in mice. Nutrients 9, 560 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Escoto, J. A. et al. Chronic consumption of sweeteners in mice and its effect on the immune system and the small intestine microbiota. Biomedica 41, 504–530 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rosales-Gomez, C. A. et al. Chronic consumption of sweeteners and its effect on glycaemia, cytokines, hormones, and lymphocytes of GALT in CD1 mice. Biomed. Res. Int. 2018, 1345282 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerasimidis, K. et al. The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. Eur. J. Nutr. 59, 3213–3230 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suez, J. et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 185, 3307–3328.e19 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Svolos, V. et al. Treatment of active Crohn’s disease with an ordinary food-based diet that replicates exclusive enteral nutrition. Gastroenterology 156, 1354–1367.e6 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lewis, J. D. et al. A randomized trial comparing the specific carbohydrate diet to a Mediterranean diet in adults with Crohn’s disease. Gastroenterology 161, 837–852.e9 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konijeti, G. G. et al. Efficacy of the autoimmune protocol diet for inflammatory bowel disease. Inflamm. Bowel Dis. 23, 2054–2060 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Albenberg, L. et al. A diet low in red and processed meat does not reduce rate of Crohn’s disease flares. Gastroenterology 157, 128–136.e5 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Slimani, N. et al. Contribution of highly industrially processed foods to the nutrient intakes and patterns of middle-aged populations in the European Prospective Investigation into Cancer and Nutrition study. Eur. J. Clin. Nutr. 63, S206–225, (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eicher-Miller, H. A., Fulgoni, V. L. III & Keast, D. R. Energy and nutrient intakes from processed foods differ by sex, income status, and race/ethnicity of US adults. J. Acad. Nutr. Diet. 115, 907–918.e6 (2015).

    Article 
    PubMed 

    Google Scholar